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1.0 INTRODUCTION

In the search for improved detection performance in sonar signal processing, there
has been a trend toward the usc of more complex processing methods. An interesting
example is matched field processing, in which the assumptions of plane wave propaga-
tion are discarded in favor of more detailed models of ocean acoustics. The extra
detection performance of these methods is achieved at the expense of additional com-
putational effort. However, the increasing availability of parallel computers motivates
us to explore the application of these new machines to challenging problems of sonar

signal processing.

This report discusses work performed to implement matched-field processing on the
Thinking Machines Corporation’s Cennection Machine (model CM-2). This was part of
a task with twofold objectives. One was to develop a high-performance computing ca-
pability for the specific matched field processing application. The other was to advance
generic software technology, specifically to address the difficult issue of software port-
ability for narallel machines. In this report, the discussion will be focused primarily on

the former objective.
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2.0 MATCHED FIELD PROCESSING

Many future undersea surveillance systems are likely to incorporate some form of
the signal processing technique known as matched field processing (MFP). The essence
of the method is depicted in figures 1 through 3. Output power indicates the degree of
match between measured sound pressure fields (from sensor data) and model predic-
tions (from replica data). The output power is to be computed for a multitude of
ranges, azimuths, depths, and frequencies. An important observation is that matched
field processing has, to varying degrees along the processing chain, high levels of par-
allelism in the frequency, spatial location, and sensor dimensions. For example, FFTs
can be computed in parallel for all sensors; each FFT has further levels of exploitable
parallelism (i.e., individual butterfly computations).

There are a number of variants of matched field processing. In this task, it was
initially planned to implement four different forms of matched field processing,
referred to as subsampled MVDR, full MVDR, conventional MFP, and array partition-
ing. The most general form of these four is array partitioning, which is the method
shown in figure 1. (Array partitioning is described in more detail in the appendix.) By
performing the quadratic forms part of the computation in different ways, either
Bartlett processing or minimum variance distortionless response (MVDR) processing
can be considered. MVDR is also known as the maximum likelihood method. These
two alternatives for the quadratic forms are discussed in [Baggeroer, et al., 1988]. Sub-
sampled MVDR and fuill MVDR are specializations in which the spatial filtering and
summation over subarray is bypassed. Subsampled MVDR and full MVDR are actually
the same algorithm with different implementation details on a moderately parallel ma-
chine (subsampled MVDR would perform matrix algebra computations without inter-
processor communication; full MVDR would employ interprocessor comn.. nication; the
distinction between subsampled and full disappears on the Connection ‘iachine). The
MVDR processing chain is shown in figure 2. Conventional MFP is * ¢ further speciali-
zation in which Bartlett processing takes the place of the minimum variance computa-
tions; that is, the subarray matrix factoring is bypassed. This is shown in figure 3.

Each method has its own advantages and disadvantages. Conventional MFP is the
simplest and was implemented on the Connection Machi::c (apart from the computa-
tion of the narrowband time series). MVDR is somew'.at more complicated and com-
putationally expensive than conventional MFP, but yields better detection performance.
Array partitioning is the most complicated, but has the potential to yield much better
detection performance for a given level of cor.putational effort.

to
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Figure 1. Matched-field processing with array partitioning.

2-2




DISTRIBUTE
TO PEs BY
SENSOR

APPLY WINDOWS
AND PERFORM
FFT

DISTRIBUTE
NB DATA

FACTOR
SUBARRAY
MATRIX

DISTRIBUTE
REPLICA
VECTORS

COMPUTE OUTPUT
POWER AND
NARROWBAND
TIME SERIES

COLLECT
FROM PEs BY
FREQUENCY

BAND

Figure 2. Minimum variance distortionless response processing.
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3.0 TARGET HARDWARE

A Connection Machine contains thousands of bit-serial processors arranged in
groups of 32. Each group of 32 physical processors consists of two custom (CM)
chips, each containing 16 physical processors, together with a memory chip, a floating-
point accelerator chip, and a chip to interface the floating-point accelerator with the
memory. By means of a time-slicing technique, each physical processor can perform
virtual processing; in other words, the Connection Machine can be operated to appear
transparently to have a larger number of physical processors than it actually has. The
ratio of virtual processors to physical processors is referred to as the virtual processor
ratio (VPR). In general, it is advantageous to be able to use high VPR, since this leads
to more efficient processing. Processors can communicate with one another either
through the router, which allows any processor to communicate with any other proces-
sor, or through the north-east-west-south (NEWS) grid, which permits communication
over an N-dimensional rectangular mesh. An important observation is that the commu-
nications expense is highly dependent on whether the router or the NEWS grid is used,
and on whether the communications are intragroup or intrachip. This has important
implications for the way the data structures of the algorithm should be arranged over
the processors of the CM-2. The activities of the Connection Machine are coordinated
by a conventional sequential computer known as the front end.

Other noteworthy features of the Connection Machine are the data vault, a disk-
array-based mass storage device, and the framebuffer, a high-resolution graphics dis-
play. Both of these facilities make use of the parallel processing features of the CM-2
to achieve data transfer at high rates. It is natural to exploit parallelism in the /O as
well as in the numerical computations, and this was an important element of the work.

The near-term preferred target machine for this effort was the AT&T DSP3, a mod-
erately parallel multiple-instruction-stream multiple-data-stream (MIMD) machine
[Shively, et al., 1989]. The immediate matched-field processing requirements were to
treat problems with tens to hundreds of sensors and up to tens of frequencies, which
appeared to be well suited to the 128 processors of the DSP3. Because the DSP3 is an
MIMD machine, it affords the opportunity to work on different parts of the processing
chain concurrently. Because the DSP3 was not available at the start of the effort, the
Connection Machine (CM-2) from Thinking Machines Corporation, a massively parallel
single-instruction-stream multiple-data-stream (SIMD) machine was used initially. The
configurations of the CM-2 that were available for this task had 4096, 8192, and
16.384 processors. One of the benefits of using the CM-2 was that its very different
architccture and programming environment provided an expanded base of experience
useful for later addressing software portability issues. Detailed discussions of the Con-
nection Machine are found in [Hillis, 1985} and [em2tecsum]|.
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4.0 SOFTWARE PORTABILITY FOR PARALLEL PROCESSORS

The initial attempt at addressing the portability issue was to employ a conventional
approach of phased development to separate the requirements and high-level design
from implementation details. Functional descriptions of the matched field processing
algorithms were prepared and reviewed. Code was then written from these functional
descriptions. Intermingling of front-end data structures and code with parallel processor
data structures and code was kept to a minimum. The front-end data structures and
code were written in the C language, while the parallel processor data structures and
code were expressed in C*, an extension of C developed for the Connection Machine.
Similarly, processes dealing only with interprocessor communication were separated
from processes involving numerical computations. From the functional descriptions
were derived requirements specifications in DOD-STD-2167A format [mvdrsrs},
[apasrs] and pseudocode documents [ravdrpseu], [apapseu] to facilitate future soft-
ware development.

The approach described above has severe limitations. A key difficulty is that the
“distance” or dissimilarity between the code and a relatively machine-independent
intermediate representation (e.g., pseudocode) is great. Consequently, the effort in
translating from a high-level representation to code is substantial and this effort must
still be expended anew with each new machine.




5.0 MAPPING ONTO THE CONNECTION MACHINE

The CM-2 source code for the conventional MFP appears in [apascl].

Matched-field processing (as well as similar signal-processing algorithms) consists
of a chain of processes with the outputs of one process serving as the inputs to the
next process in the chain. A massively parallel implementation of each process
involves the use of N-dimensional rectangular meshes over which the data are arranged
for the parallel computations, with different meshes (including different values of N)
being appropriate for the different processes of the algorithm and different stages
within a process. In the array partitioning algorithm, the processes are distribute to
PEs by sensor, apply windows and perform FFT, distribute AzEl vectors, spatially
filter frequency bin data, distribute and sum NB data by subarray (called distribute
NB data in the non-array-partitioning case), factor subarray matrix, distribute replica
vectors, compute output power and narrowband time series, and collect from PEs by
frequency band. These are discussed in the appendix. The subset capability imple-
mented on the Connection Machine consisted of conventional MFP only, with no com-
putation of the narrowband time series. The processes associated with this subset capa-
bility are distribute to PEs by sensor, appi; windows and perform FFT, distribute
NB data, distribute replica vectors, compute output power, and collect from PEs by
frequency band.

The rectangular mesh associated with a particular process reflects the parallelism
inherent in that process. For example, in the apply windows and perform FFT proc-
¢ss, the data are naturally arranged over a two-dimensional mesh, with the dimensions
corresponding to sensor and time on input and sensor and frequency on output. It is
also important to note the dimensions with respect to which the computations are
totally decoupled or “embarrassingly parallel” (EP). For example, in the apply win-
dows and perform FFT process, all sensor channels can be treated completely inde-
pendently of one another. so we say the process is EP with respect to sensor. The rec-
tangular meshes are indicated in figure 4. with the EP mesh edges indicated in upper
case; the labeling applies at the conclusion of each process’ execution. By identifying
the dimensions over which the processing is EP, it is possible to decide how to arrange
data over the processors to keep the communications costs low. The parallelism of our
Connection Machine implementation of conventional MFP is shown in figure 5. Real-
world limitations such as finite memory prevent us from exploiting all the intrinsic par-
allelism of an ideal algorithm.

It should be noted that the implementation of the software discussed in this report
does not exploit the “EP-ness™ of the problem in this way because the software
uses the less efficient router communications only. However, it should not be too
difficult to rewrite the software to use the more efficient N-d grid package (from the
NRL. C* library), which employs the NEWS grid to perform fast nearest-neighbor
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Figure 5. Parallelism in the Connection Machine implementation
of conventional MFP.

communications. Some extensions to the N-d grid package would be needed to exploit
the fact that communications are low or nonexistent along certain mesh dimensions. It
would still be necessary to use router communications in some parts of the algorithm.

The distribute to PEs by sensor process uses a sensor/time 2-D mesh, and is EP
with respect to sensor and time.

The apply windows and perform FFT process uses a sensor/time 2-D mesh (input)
and sensor/frequency 2-D mesh (output), and is EP with respect to sensor.

The distribute AzEl vectors process uses a sensor/frequency 2-D mesh (input) and
sensor/frequency-azimuth-clevation 2-D mesh (output), and is EP with respect to sensor




and frequency-azimuth-elevation. This was not a part of our Connection Machine
implementation.

The spatially filter frequency bin data process uses a sensor/frequency-
azimuth-elevation 2-D mesh, and is EP with respect to sensor and frequency-
azimuth-elevation. This was not a part of our Connection Machine implementation.

The distribute and sum NB data by subarray process uses a sensor/frequency-
azimuth-elevation 2-D mesh (input) and a subarray/frequency-azimuth-elevation/time
epoch group 3-D mesh (output), and is EP with respect to subarray and frequency-
azimuth-elevation. Our Connection Machine implementation (of distribute NB data) is
EP with respect to frequency only.

The factor subarray matrix process uses a subarray/frequency-azimuth-elevation/
time epoch group 3-D mesh, and is EP with respect to frequency-azimuth-eievation.
This was not a part of our Connection Machine implementation.

The distribute replica vectors process uses a subarray/frequency-azimuth-elevation/
spatial location 3-D mesh, and is EP with respect to subarray, spatial location, and
frequency-azimuth-elevation. Our Connection Machine implementation is EP with
respect to sensor and frequency only.

The compute output power and narrowband time series process uses a subarray/
(spatial location or time epoch) column group/frequency-azimuth elevation 3-D mesh
(input) and a spatial location/frequency-azimuth-elevation 2-D mesh (output), and is EP
with respect to spatial location and frequency-azimuth-elevation. Our Connection
Machine implementation was EP with respect to frequency only.

The collect from PIs by frequency band process uses a spatial location/frequency-
azimuth-elevation 2-D mesh, and ts EP with respect to spatial location and frequency-
azimuth-clevation.

Note that downstream of the apply windows and perform FFT process, the entire
processing (sub)chain is EP with respect to frequency-azimuth-elevation.




6.0 VISUALIZATION FOR MATCHED-FIELD PROCESSING

The process collect from PEs by frequency band produces a large volume of out-
put data, indexed by spatial location (range and depth), frequency, and time epoch.
Because matched-field processing is a relatively unexplored area of investigation, it is
worthwhile to be able to present the output data to an analyst with little data reduction
so as to foster the insights needed for subsequent, more structured statistical analyses.
For example, prior to attempting an empirical probability of detection analysis, it is
necessary to have a reasonably good a priori knowledge of a target’s location in range
and depth, a task that is made difficult by the ambiguities introduced by the compli-
cated propagation of sound in the ocean.

An approach to presenting the kind of multidimensional data set used in this task
was to employ the Connection Machine’s framebuffer to rapidly play back outputs
stored on the data vault for many time epochs as an animation or “movie.” Such a
movie consists of a series of frames appearing on the display in rapid succession. Each
frame consists of a collection of B-scan displays, each one corresponding to a different
frequency. Each B-scan display indicates output power as gray level (as a function of
range and depth). This is illustrated in figure 6.
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7.0 PRELIMINARY PERFORMANCE EVALUATION

A rudimentary evaluation of the implementation of conventional MFP on the Con-
nection Machine was done to gauge the performance, at least in order-of-magnitude
terms. The parameters of the test case were as follows: 4096 spatial locations, 32 sen-
sors, 8 retained frequency bins, and one epoch comprising 256 temporal points per
FFT window. This test case was evaluated by using a CM-2 with 8192 physical proces-
sors. The elapsed time for this processing was approximately 8 minutes. Roughly three
quarters of this time was consumed in the output power computation, with most of the
remainder arising from I/O. Subsequent analysis suggested that this extremely poor
performance resulted from the heavy use of router communication.
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8.0 CONCLUSIONS AND RECOMMENDATIONS

The effort described in this report pointed up a number of opportunities and
difficulties associated with implementing matched-field processing and similar types of
sonar signal processing on massively parallel computers.

Conventional MFP was implemented on the Connection Machine. In this initial
implementation, the potential of the CM-2 was not realized because the programming
style and language features used led to a large interprocessor communications burden.

In subsequent efforts at developing signal processing on parallel processors, there
should be additioral emphasis on decomposing the overall processing into a relatively
small set of building blocks that are of higher level than elementary arithmetic
operations on scalars. Broad categories of these low-level building blocks would include
(i) matrix operations such as those of the basic linear algebra subprograms; (ii) the
fast Fourier transform; (iii) data motion primitives to support such non-numeric
operations as buffering with overlap, transpose, gather/scatter, and others.

One of the issues that complicates the development of portable parallel libraries is
deciding on appropriate arrangements of data structures over distributed memory. For
conventional machines, such matters as row or column ordering and strides are of
concern. For parallel computers, the characteristics of the machine play a more
substantial role and introduce a larger range of choices that must be made.

It is encouraging to observe that the array partitioning version of matched-field
processing has a high degree of exploitable parallelism, with the bulk of the algorithm
embarrassingly parallel with respect to frequency-azimuth-elevation. It is also worth
noting that the processing of data from external sources is not the only situation in
which massively parallel machines and algorithms are relevant. When detailed
simulation studies are to be performed, there is an additional problem dimension
introduced, namely the realizations of the pseudorandom sequences used to generate
databases of output statistics. In this case, we have parallelism with respect to
frequency-azimuth-elevation realization. The applicability of massively parallel
computers to these simulation studies should be explored.

Some initial explorations were made in visualizing matched field processing for the
case of no azimuthal resolution. Introducing the additional dimension of azimuth will
provide new challenges.
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APPENDIX

A.1.0 Partitioned Array Bartlett Program

This is a functional description for a program which forms Bartlett az-
imuth and elevation beams for each subarray of a partitioned array, then
Bartlett or Minimum Variance Distortionless Response (MVDR) Matched
Field Processing (MFP) to combine the subarray outputs.

A.l.1 Partitioned Array Bartlett Program Inputs

Raw Sensor_Data:
TBD
Raw_Replica_Vectors:
TBD
Parameters:
N _Points_Per_Update
N _Sensors
N_Time_Max
N_FFT._Size
[_Freq_Bin_First
I.Freq_Bin_Last
N _Freq_Bins_Out
N Saved_Updates
N Freq Bands
N_Freq_Bins_Per_Band
N Subarrays
[_First_Sensor|i] i = 0,...,N_Subarrays - 1
I_Last_Sensor(i] i = 0,...,N_Subarrays - 1
N_AzEl_Beams
N_AzEl_Beams_Per_Batch
N_AzEl_Batches
N_Retained_Times
N_Replicas
N _Replicas_Per_Batch
N_Replica_Batches
LB ME _Flag
QR _Parameters:
Inverse_Condition _Number_Threshold

Constraints:
N_Freq Bins.Ont = I Freq Bin_Last - 1 _Freq_Bin_First + 1




N_FFT Size = N Saved_Updates * N_Points_Per_Update
N_Freq_Bins_Out = N_Freq_Bins_Per_Band * N_Freq_Bands
N_AzEl_Beams = N_AzEl_Beams_Per_Batch * N_AzEl_Batches
N_Replicas = N_Replicas_Per_Batch * N_Replica_Batches

A.1.2 Partitioned Array Bartlett Program Input/Outputs
none
A.1.3 Partitioned Array Bartlett Program Outputs

Output _Power:
TBD
Narrowband_Time_Series:

TBD

A.1.4 Partitioned Array Bartlett Program Algorithm

Read Parameters
Do one-time caleulations
Open input and output data files
While more sensor data to read
Invoke Distribute_to_PEs_by Sensor process
Invoke Apply_Windows_and_Perform_FFT process
While more AzFl batches to read
[nvoke Distribute _AzEl Vectors process
Invoke Spatially _Filter_Frequency_Bin_Data process
Invoke Distribute_and Sum NB_Data_by Subarray process
Fud while
Invoke Factor Subarray _Matrix process
While more replicas to read
Invoke Distribute_Replica_Vectors process
[nvoke Compute Output Power_and_Narrowband Time Series process
tnvoke Collect from PEs_ by _Frequency_Band process
Fuod while
Fod while

Close mput and ontpat data files




A.1.5 Partitioned Array Bartlett Program Special Require-
ments

TBD

A.1.6 Partitioned Array Bartlett Program Validation Criteria

The following tests shall be employed to validate the program:

(i) Simulated acoustic fields arising from two plane waves, together with
additive white Gaussian noise, independent and identically distributed from
sensor to sensor, shall be generated and supplied as Raw_Sensor_Data. The
Output_Power and Narrowband Time Series shall be examined for agree-
ment with theoretical predictions. In particular, maximum response should
result from those replicas corresponding to the true arrival directions of the
plane waves.

(11) Seatest data shall be processed and the outputs compared with those
produced by existing processing software.

A.2.0 Distribute to PEs by Sensor Process

The Distribute to PEs by Sensor Process accesses from mass storage
real time series indexed by time and sensor, reorganizes it if necessary, and
routes it to PEs. The output data is organized in time updates, one sensor
per PE.

A.2.1 Distribute to PEs by Sensor Process Inputs

Raw _Sensor_Data:
BD
Parameters:
N _Points_Per_Update
N Sensors
N_Time_Max
Time_Index:
[ Time

A.2.2 Distribute to PEs by Sensor Process Input/Outputs

Sensor_History:

xhfi. j. k] i

i

0, .... N_Points_Per_Update - 1,
U, .... N Sensors - 1
0. ... N Saved_Updates - 1

J
k

Il




xh real
K _Oldest_Update

A.2.3 Distribute to PEs by Sensor Process Outputs
none
A.2.4 Distribute to PEs by Sensor Process Algorithm

For each j in 0, ..., N_Sensors - 1
Fill xh[i, j, K.Oldest_Update]
End for
K _Oldest _Update = { K_Oldest _Update + 1 ) mod N _Saved_Updates

A.2.5 Distribute to PEs by Sensor Process Special Require-
ments

The Sensor_History xh[] shall be 16-bit real.

A.2.6 Distribute to PEs by Sensor Process Validation Criteria

The following test shall be employed to validate the process:

{1) The time index and sensor index are to be encoded into each data
value of Raw_Sensor_Data. The Sensor_History values x[i, j, k] shall then be
examined for agreement with (i, j).

A.3.0 Apply Windows and Perform FFT Process

The Apply Windows and Perform FFT Process transforms blocks of time
series to the frequency domain. A circular buffer of input data is mairtained.

A.3.1 Apply Windows and Perform FFT Process Inputs

Spectral_Analysis_Window:
wli] i =0, .., N_FFTSize - 1
w real
Sensor_History:
xh{i. j, k] i =0, .., N_Points_Per_Update - 1,

j =10, .., NSensors - 1
k =0, ..., N.Saved _Updates - 1
xh real

K _Oldest _Update

Parameters:

A-4




N_Points_Per_Update

N Sensors

N_FFT_Size

N Saved _Updates

N_Time_Max

[_Freq_Bin_First

I_Freq_Bin_Last

N _Freq_Bins_out
Time_Index:

[.Time

A.3.2 Apply Windows and Perform FFT Process Input/Outputs

none

A.3.3 Apply Windows and Perform FFT Process Outputs

Raw _Frequency _Bin_Data:
vrfi, J] i=0..., N.FFTSize - 1
j = 0...., N .Sensors - |
yr complex




A.3.4 Apply Windows and Perform FFT Process Algorithm

Define C(L) = L mod N_Points_Per_Update
Define D(L) = ( K_Oldest_Update + L / N_Points_Per_Update ) mod N_Saved_Updates
For each jin 0, ..., N_Sensors - 1
xwli, | = wli] xh[C(i), j. D()),
i=0,.., NFFTSize - 1
yrfi, j] = FFT(i; N_FFT Size; xw|[., j]),
i=0, .., N.FFT Size - 1
End for

A.3.5 Apply Windows and Perform FFT Process Special Re-
quirements

The Senror_History xh[] shall be 16-bit real.

The xw arrays shall be complex so that a complex-to-complex FFT may
be used.

A.3.6 Apply Windows and Perform FFT Process Validation
Criteria

Tests for validating this process are described in the document "Prelim-
inary Requirements Specification: Function Validation™.

A .4.0 Distribute AzEl Vectors Process

The Distribute AzEl Vectors Process routes the steering vectors for
Azimuth-FElevation beams so that each PE has the vectors for all frequency
bins to be processed, and for the channels which it FFTed.

A.4.1 Distribute AzEl Vectors Inputs

Raw_Azimuth_Elevation_Vectors:
TBD

Parameters:
N_Freq_Bands
N_Freq.Bins_Per_Band
N_AzFl_Beams_Per_Batch
N Sensors

A.4.2 Distribute AzEIl Vectors Input/Outputs
none
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A.4.3 Distribute AzEl Vectors Outputs

AzEl Vectors:
vafil, i2. k2,j] il = 0, .... N.Freq_Bands - 1
i2 = 0, ... N.Freq.Bins_Per_Band - 1
k2 =0, ..., N_.AzEl_.Beams_Per_Batch - 1
j =0, .., N.Sensors - 1
va complex

A.4.4 Distribute AzEl Vectors Process Algorithm
THBD

A.4.5 Distribute AzEl Vectors Special Requirements

None

A.4.6 Distribute AzEl Vectors Validation Criteria

The following test shall be emploved to validate the process:

The sensor number, frequency bin. and AzEl vector number shall be
encoded in the Raw_AzEl Vectors. The AzEl_Vectors shall be examined for
agreement with [il, i2, k2, j].

A.5.0 Spatially Filter Frequency Bin Data Process

The Spatially Filter Frequency Bin Data Process applies the weights of
ecach AzEl vectors for each frequency bin to each seunsor.

A.5.1 Spatially Filter Frequency Bin Data Process Inputs

Raw frequency _Bin_Data:
vrfi, j] 1 =0....., N.FFT Size - |
1= 0, ... NSensors - 1
vr complex
AzEL Vectors:
vafil, i2. k2. j] il = 0..... N_Freq_Bands - 1
12 = 0. .... N_Freq_Bins_Per_Band - |
k2 = 0. ... N_AzEl.Beams_Per_Batch - 1
j=0.... N Seasors - 1
va complex

Il

A.5.2 Spatially Filter Frequency Bin Data Process Input/Outputs

none
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A.5.3 Spatially Filter Frequency Bin Data Process Outputs

Raw_Filtered_NB_Data:

frfi1, i2, k1, k2, j] il =0, ..., N_Freq_Bands - 1
i2 =0, ..., N_.Freq_Bins_Per_Band - 1
k1 = 0, ..., N.AzEl_Batches - 1

k2 = 0, ..., N.AzEI_Beams_Per_Batch - 1
j=0,..., NSensors - 1
fr complex

A.5.4 Spatially Filter Frequency Bin Data Process Algorithm

For each il in 0, ..., N_Freq_Bands - 1
For each i2 in 0, ..., N_Freq_Bins_Per_Band - 1
i = [.Freq_Bin_First + i1*N_Freq_Bins_Per_Band + i2
For each k2 in 0, ..., N_AzEl_Beams_Per_Batch - 1
For each j in 0, ..., N_Sensors - 1
fr[il, 12, k1, k2, j]
= va[il, i2, k2. j]*yrfi, j]
End for
End for
End for
End for

A.5.5 Spatially Filter Frequency Bin Data Process Special Re-
quirements

The index k1 associated with the current AzEl batch is under control of
the loop "While more AzEl batches to read”.

A.5.6 Spatially Filter Frequency Bin Data Process Validation
Criteria

The following test shall be employed to validate the process:

Raw_Frequency_Bin_Data and AzFl_Vectors shall be synthesized such
that the real part of the Raw _Filtered_NB_Data will be equal to the sensor
number and the imaginary part will be encoded with the frequency bin
number and the vector number. The process will be run and the output
(‘Xil”lill(‘d f()r correctness.
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A.6.0 Distribute and Sum NB Data by Subarray Process

The Distribute and Sum NB Data by Subarray Process routes frequency
bin data so that each PE has weighted data for selected AzEl beams for
all sensors for selected frequency bins. The PEs then sum the weighted
sensor data to to form a narrowband time series for each AzFl beam for
each subarray.

A.6.1 Distribute and Sum NB Data by Subarray Process In-
puts

Raw_Filtered_NB_Data:
fr{il, i2, k1, k2, j] il =0, ..., N_Freq_Bands - 1
i2 = 0, ..., N_.Freq_Bins_Per_Band - 1
kl = 0, ..., N_AzEl_Batches - 1
k2 = 0, ..., N_AzFl_Beams_Per_Batch - 1
j=0, ..., NSensors - 1
fr complex
Parameters:
N _Freq-Bands
N _Freq-Bins_Per_Band (= N_Freq-Bins_Out / N_Freq-Bands)
N_AzEl_Beams
N_AzEl_Batches
N_AzEl_Beams_Per_Batch
N _Subarrays

[_First_Sensor(s] s = 0....,N_Subarrays - 1

[_Last_Sensor[s] s = 0....,N_Subarrays - 1
Time Index:

[ Time

A.6.2 Distribute and Sum NB Data by Subarray Process In-
put/Outputs

none

A.6.3 Distribute and Sum NB Data by Subarray Process Out-
puts

Subarray_AzEI_.NB_Time Series:
vhlil, i2, k1, k2, s, n] il =0, ..., N.Freq_.Bands - 1
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i2 =0, ..., N_Freq_Bins_Per_Band - 1

k1 = 0, ..., N.AzEl Batches - 1

k2 = 0, ..., N_AzEl_Beams_Per_Batch - 1
s = 0, ..., NSubarrays - 1

n =0, ..., N_.Retained_Times - 1

A.6.4 Distribute and Sum NB Data by Subarray Process Al-
gorithm

Define C(m) = m mod N_Retained_Times
For each il in 0, ..., N_Freq_Bands - 1
For each i2 in 0, ..., N_Freq_Bins_Per_Band - 1
For each k1 in 0, ..., N_AzFE]l Batches - 1
For each k2 in 0, ..., N_AzEl_Beams_Per_Batch - 1
For each s in O, ..., N_Subarrays - 1
yh(il, i2, k1, k2, s, C(I.Time)] = 0
For each jin 0, ..., I_First Sensor]s], ..., [_Last_Sensor[s]
yh[il,i2, k1, k2, s, C(I_Time)] =
yhli1, i2, k1, k2, s, C(I_Time)] + fr[i1, 12, k1, k2, j]
End for
End for
FEnd for
End for
End for
End for

A.6.5 Distribute and Sum NB Data by Subarray Process Spe-
cial Requirements
none
A.6.68 Distribute and Sum NB Data by Subarray Process Vali-
dation Criteria
The following test shall be employed to validate the process:
(i) The frequency index, sensor index, and AzEl beam index shall be en-
coded into each data value of Raw _Filtered_NB_Data. The Subarray_AzEI_NB_Time Series
values yh[il, 12, k1, k2, s, n] shall then be examined for correctness.
A.7.0 Factor Subarray Matrix Process
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The Factor Subarray Matrix Process updates X and performs
its QR factorization, where A = X X* is the cross-spectral matrix.
A.7.1 Factor Subarray Matrix Process Inputs

Subarray _AzEl_NB_Time_Series:
yhlil, i2, k1, k2, s, n] il =0, ..., N_Freq.Bands - 1
i2 = 0, ..., N_Freq_Bins_Per_Band - 1
k1 =0, ..., N_AzEl_Batches - 1

k2 = 0, ..., N_AzE}|_Beams_Per_Batch -

s =0, ..., NSubarrays - 1
n = 0, ..., N_Retained_Times - I;
yh complex
Parameters:

N Sensors

N _Freq_Bands

N _Freq_Bins_Per_Band (= N_Freq_Bins / N_Freq_Bands)

N_Retained_Times

N_Time_Max

N_.Subarrays

N_AzEl_Beams

N_AzEl_Beams_Per_Batch

N_AzEl_Batches

QR _Parameters:

Inverse_Condition_Number_Threshold
Time_Index:
I_Time

A.7.2 Factor Subarray Matrix Process Input/Outputs
none
A.7.3 Factor Subarray Matrix Process Outputs

Data_Matrix_Factorization:
to[il, i2, k1, k2, m, n}j1 = 0, ..., N_Freq_Bands - 1,
i2 = 0, ..., N_Freq_Bins_Per_Band - 1,
k1l =0, ..., N_AzEl_Batches - 1,
k2 = 0, ..., N.AzEl_Beams_Per_Batch - 1,
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m = 0, ..., N.Subarrays - 1
n =0, ..., N.Subarrays - 1
to complex

A.7.4 Factor Subarray Matrix Process Algorithm

Define C(L) = L mod N_Retained_Times
Define X to be a matrix (N_Subarrays by N_Retained_Times) such that
X[m, n] = yhlil, i2, k1, k2, m, n}, m = 0, ..., N.Subarrays - 1,
n =0, ..., N.Retained_Times - 1
(one such X for each value of
(i1, i2, k1, k2))
Define T to be an upper triangular matrix (N_Subarrays by N_Subarrays)
such that
T[m, n] = to[il, i2, k1, k2, m, n], m = 0, ..., N.Subarrays - 1
n =0, ..., NSubarrays - 1
(one such T for each value of
(i1, i2, k1, k2))
If .B.ME_Flag = 0 then return
If [_.Time < N_Retained.Times then return
For each il in 0, ..., N_Freq.Bands - 1
For each i2 in 0, ..., N_Freq_Bins_Per_Band - 1
For each k1 in O, ..., N_AzEl_Batches - 1
For each k2 in 0, ..., N_AzEl_Beams_Per_Batch - 1
Matrix computation: T = QR_Factorization(QR _Parameters; X)
End for
End for
End for
End for

A.7.5 Factor Subarray Matrix Process Special Requirements

The inverse condition number shall be monitored; if it falls below
Inverse_Condition_Number_Threshold, a diagnostic message shall be pro-
duced.

A.7.6 Factor Subarray Matrix Process Validation Criteria

The matrices T, X should satisfy the condition
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TT" = XX*

where * denotes conjugate transpose.

A.8.0 Distribute Replica Vectors Process

The Distribute Replica Vectors Process accesses replicas from mass stor-
age and routes them to appropriate PEs.

A.8.1 Distribute Replica Vectors Process Inputs

Raw _Replica_Vectors:

TBD

Parameters:
N_Freq_Bands
N_Frea_Bins_Per_Band
N_AzEl_Batches
N_AzFEl_Beams_Per_Batch
N _Subarrays
N_Retained _Times
N _Replicas
N _Replicas_Per_Batch
N_Replica_Batches

A.8.2 Distribute Replica Vectors Process Input/Outputs
TBD
A.8.3 Distribute Replica Vectors Process Outputs

Replica_Vectors:
vifil, i2, k1, k2, r, s], il =0, ..., N_Freq_.Bands - 1

i2 = 0, ..., N_Freq_Bins_Per_Band - 1
k! =0, ... N_AzEl_Batches - 1
k2 = 0, .... N_AzEl_ Beams_Per_Batch - 1
r = 0, ..., N_Replicas_Per_Batch - 1
s = (0, ..., N Subarrays - 1
vi complex

A.8.4 Distribute Replica Vectors Process Algorithm
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TBD
A.8.5 Distribute Replica Vectors Process Special Requirements

TBD

A.8.6 Distribute Replica Vectors Process Validation Criteria

TBD

A.9.0 Compute Qutput Power and Narrowband Time Series
Process

The Compute Qutput Power and Narrowband Time Series Process forms
and outputs either Bartlett or Minimum Energy power for a set of input
replica vectors.

A.9.1 Compute Output Power and Narrowband Time Series
Process Inputs

Subarray . AzEINB_Time Series:
yhlil, i2, k1, k2, s, n] il = 0, ..., N_Freq_Bands - 1
i2 = 0, ..., N_Freq_Bins_Per_Band - 1
kt =0, ..., N_AzEl_Batches - 1
k2 = 0, ..., N.AzEl_Beams_Per_Batch - 1
s = 0, ..., NSubarrays - 1
n =0, ..., N_Retained_Times - 1;
yh complex
Data_Matrix_Factorization:
tofil, i2, k1, k2, m, nj, il =0, ..., N_Freq.Bands - 1,
i2 = 0, ..., N_Freq.Bins_Per_Band - 1,
k1 = 0, ..., N_.AzEl Batches - 1,
k2 = 0, ..., N_AzEl_Beams_Per_Batch - 1,
m = 0, ..., N .Subarrays - 1
n =0, ..., N.Subarrays - 1
to complex
Replica_Vectors:
vilil, i2, k1. k2, r, s], il =0, ..., N.Freq_.Bands - 1
i2 = 0, ..., N_Freq_Bins_Per_Band - 1
k1 =0, ..., N.AzE| Batches - 1
k2 = 0, ..., N.AzEl_Beams_Per_Batch - 1
r =0, ..., N_Replicas_Per_Batch - 1
s = 0, ..., NSubarrays - 1
vi complex
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Parameters:
N_Freq_Bands
N _Freq.Bins_Per_Band
N_AzEl_Batches
N_AzEl_Beams_Per_Batch
N Subarrays
N_Retained_Times
N _Replicas_Per_Batch
I.B_ME _Flag
Time_Index:

[_Time

A.9.2 Compute Output Power and Narrowband Time Series
Process Input/Outputs

A.9.3 Compute Output Power and Narrowband Time Series
Process Outputs

Raw_Output_Power:
plil,i2, k1, k2, r]. it = 0, .... N_Freq_Bands - 1
i2 = 0, ..., N_Freq_Bins_Per_Band - 1
k1l =0, .... N_.AzEl Batches - 1

k2 = 0, ..., N_AzEl_Beams_Per_Batch - 1
r = 0, ..., N _Replicas_Per_Batch - 1
p real

Raw_Narrowband _Time_Series:
TBD

A.9.4 Compute Output Power and Narrowband Time Series
Process Algorithm

Define v to be a vector (length N_Subarrays) such that
vls] = vifil, i2, k1, k2, r, 5] s = 0, ..., NSubarrays - 1
{one such v for each value
of (i1,1i2, k1, k2. 1))
Define X to be a matrix (N_Subarrays by N_Retained_Times) such that
X[m. n] = vh[il. 2, k1, k2, m, n] m = 0, ..., N_Subarrays - 1
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n=0,.., N Retained_Times - 1
(one such X for each value
of (i1, i2, k1, k2))
Define T to be an upper triangular matrix (N_Subarrays by N_Subarrays)
such that
T[m, n] = to[il, i2, k1, k2, m, n] m = 0, ..., N.Subarrays - 1
n =0, ..., NSubarrays - 1
(one such T for each value
of (il. 12, k1, k2))
If I_.Time < N_Retained_Times and I.B_.ME_Flag = 1 then return

For each il in 0, ..., N_Freq_Bands - 1
For each 12 in 0, ..., N_.Freq_Bins_Per_Band - 1
For each k1 in 0, ..., N_AzEl_Batches - 1
For each k2 in 0, ..., N_.AzEl Beams_Per_Batch - 1
For each rin 0, ..., N_Replicas_Per_Batch - 1
Switch on I_ B_ME _Flag

Case 0:
Matrix computation: w = Xv*
Matrix computation: p[il, i2, k1, k2, r] = w*w

End case 0

Case 1:
Matrix computation: w = Backsolve('T;v)
Matrix computation: p[il, i2, k1, k2, r] = (w*w)™!

Fnd case 1

End switch
End for
End for
End for
Fad for
Fnd for

A.9.5 Compute Output Power and Narrowband Time Series
Process Special Requirement

A.9.6 Compute Output Power and Narrowband Time Series
Process Validation Criteria

A.10.0 Collect from PEs by Frequency Band Process

The Collect from PEs by Frequency Band Process routes output power




and narrowband time series for output to mass storage.
A.10.1 Collect from PEs by Frequency Band Process Inputs

Raw_Output_Power:
p(il, 12, k1, k2, 1], il =0, ..., N.Freq_Bands - 1
i2 =20, ..., N.Freq_Bins_Per_Band - 1
k1 = 0, ..., N_AzEl_Batches - 1
k2 = 0. ..., N.AzFl_Beams_Per_Batch - 1
r = 0, ..., N_Replicas_Per_Batch - 1
p real
Raw _Narrowband_Time_Series:
TBD
Parameters:
N_Freq-Bands
N _Freq_Bins_Per_Band
N_AzEl_Batches
N_AzEl_.Beams_Per_Batch
N_Replicas_Per_Batch

A.10.2 Collect from PEs by Frequency Band Process Input/Outputs

TBD
A.10.3 Collect from PEs by Frequency Band Process Outputs

Output_Power:
TBD
Narrowband_Time_Series:

TBD

A.10.4 Collect from PEs by Frequency Band Process Algo-
rithm

TBD

A.10.5 Collect from PEs by Frequency Band Process Special
Requirements

D
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A.10.6 Collect from PEs by Frequency Band Process Validation
Criteria
TBD
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